Pressure-Sensitive Electrode Material, Means and Methods of Use

Stanford researchers have developed an ultra-sensitive resistive pressure sensor based on an elastic, microstructured conducting polymer (EMCP) thin film. This low cost device enables the detection of a large range of pressure values (~1 Pa to 100 kPa) and exhibits a short response time, good reproducibility, excellent cycling stability and temperature-stable sensing. These pressure sensors can be applied to a wide range of fields, including human-computer user interfaces, robotics, and industrial monitoring. Moreover, EMCP materials will be highly useful in the design of next generation electronic systems due to their advantageous traits, including a 3D hierarchical morphology, high conductivity, and good elasticity.

Figure

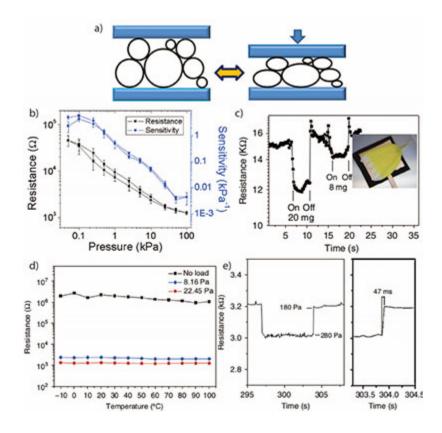


Figure description - Summary of EMCP pressure sensor characteristics. (a)

Mechanism of action. With increasing pressure, the contact area between the EMCP and the electrode increases, causing a reduction in the contact resistance. (b) High pressure characteristics of the device. The device functions in the range of \sim 1 Pa to at least 100 kPa. (c) Demonstration of the ability to sense small weights such as an 8 mg flower petal. (d) Resistance of the sensor at different pressures. The pressure sensing characteristics are consistent in the range from -10 to 100 ?C. (e) Time response of 50 ms.

Stage of Research

- Prototype tested and exhibited unprecedented performance with ultra-high sensitivity
- Sensitivity of this pressure sensor can be ultimately improved to ~56.0–133.1 kPa⁻¹ in the low-pressure regime (30 Pa), the highest among any reported flexible pressure sensors

NPR "All Tech Considered" Feature

"Just Like Human Skin, This Plastic Sheet Can Sense And Heal", April 11, 2016

Applications

- Current application can be for low cost, disposable sensors for temporary sensing requirements
- Pressure sensor materials can be used in a wide range of industries such as medical, industrial, electronics, robotics, displays, and toys and games.

Advantages

- Low cost, simple design
- Pressure response is insensitive to temperature
- Ultra -high sensitivity at low and medium pressures
- Wide dynamic range
- Rapid response time

Publications

 Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. Bao, "<u>An ultra-sensitive resistive pressure sensor based on hollow-sphere</u> <u>microstructure induced elasticity in conducting polymer film"</u>, Nature Comm., 5, Article number: 3002, 2014.

Patents

- Published Application: 20150168236
- Published Application: <u>WO2015095379</u>

Innovators

- Alex Chortos
- Lijia Pan
- Zhenan Bao

Licensing Contact

Evan Elder

Senior Licensing Associate

<u>Email</u>