Docket #: S22-068

Amphiregulin nanobodies to prevent the development of fibroatheromas

Researchers at Stanford have discovered that nanobodies blocking amphiregulin (AREG) activity have the potential to impede the progression of early-stage atherosclerotic plaque lesions to advanced-stage fibroatheromas.

Coronary artery disease is a chronic inflammatory disease characterized by the build-up of atherosclerotic plaques. In the early stages, the plaques are rich in lipids and can be treated with medication and lifestyle changes. However, as they mature beyond the lipid-rich phase, a subset of activated T-cells within the plaques expresses the pro-fibrotic protein AREG. This protein promotes smooth muscle cell proliferation and fibrosis, leading to advancement of lesions into irreversible advanced-stage plaques, such as fibroatheroma. Fibroatheroma is a major precursor to plaque rupture that could lead to life-threatening acute cardiac syndromes.

To prevent the development of fibroatheromas, Stanford researchers have devised a nanobody-based platform that blocks the attachment of AREG to atherosclerotic plaque lesions, hindering disease progression. The nanobody is a bispecific protein with two immunoglobulin single variable (ISV) domains: one ISV domain binds to AREG and the other domain interferes with vascular smooth muscle cells activity. This nanobody-based platform targeting the root cause of fibroatheroma development could revolutionize treatment strategies for patients with coronary artery disease.

Stage of Development

Proof of concept

Applications

Atherosclerosis treatment

Advantages

• Specifically targets development of fibroatheromas, which cannot be mitigated with current treatments

Publications

Chowdhury, R. R., D'Addabbo, J., Huang, X., Veizades, S., Sasagawa, K., Louis, D. M., Cheng, P., Sokol, J., Jensen, A., Tso, A., Shankar, V., Wendel, B. S., Bakerman, I., Liang, G., Koyano, T., Fong, R., Nau, A. N., Ahmad, H., Gopakumar, J., Wirka, R., ... Nguyen, P. K. (2022). <a href="https://doi.org/10/2016/jhu/jub/hu/ju

Patents

• Published Application: WO2023172699

Innovators

- Patricia Nguyen
- Charles Chan
- Mark Davis

Licensing Contact

Cheryl Cathey

Senior Licensing and Strategic Alliance Manager

Email