Docket #: S09-343

Marker-less Motion Capture with Time-Of-Flight Sensors on Parallel Processing Hardware

A team of researchers from the Stanford Artificial Intelligence Laboratory have developed a portfolio of patented innovations that harness depth sensing technology to analyze human motion for touch-free control of devices and motion capture. This marker-less motion capture invention uses parallel processing processors (such as a programmable GPU) to efficiently solve high-dimensional perception problems and enable real-time detection and tracking of motion.

Additional Technologies in this Portfolio:

"Marker-less Tracking of Human and Articulating Bodies using Parallel Processing Hardware" (Stanford Docket S09-319)

"Detecting and Classifying Body Parts and Gestures in Range Images" (Stanford Docket S09-369)

"Ergonomic Touch-Free User Interfaces" (Stanford Docket S10-147)

Applications

- **Human-machine interface** for touch free interactions with devices such as:
 - o computers web-browsing, data entry
 - television gesture-based remote controls
 - smart phones
 - gaming consoles
- Motion capture for:
 - animation
 - o task demonstration and teaching for industrial and robotic applications
 - rehabilitation and athletics

[&]quot;Touch -Free Control of Devices" (Stanford Docket S10-148)

• Surveillance and security

Advantages

- Requires only one camera
- Requires no marking of the articulated body
- High precision, even under real-time constraints

Publications

 Ganapathi, Hariraam Varun, Christian Theobalt, and Sebastian Thrun. "Motion capture with low input data constraints" <u>US Patent 8,994,790</u>

Patents

• Published Application: 20110205337

• Issued: <u>8,994,790 (USA)</u>

Innovators

- Varun Ganapathi
- Sebastian Thrun
- Christian Theobalt

Licensing Contact

Imelda Oropeza

Senior Licensing Manager, Physcial Sciences

Email