

Docket #: S10-195

Mouse Model for Visualizing Synapses Jackson Lab stock 012266

Researchers in Prof. Liqun Luo's laboratory have developed a mouse model system for *in vivo*, non-invasive, spatially- and temporally-controlled labeling of individual synapses. These mice (ZtTA and TRE-bi-ST-T) combined with different Cre/CreER lines could label specific types of neurons or single neurons with a general cell marker and a presynaptic or postsynaptic marker. The mice can be used to study synaptogenesis, synaptic plasticity, and information flow in neural circuits.

A cerebellar stellate cell labeled with cytoplasmic tdT (red) and synapse-localized synaptophysin-GFP (green). This technology allows single cell resolution and manipulation in intact mice, and increased resolution to study neuronal connectivity.

Applications

- **In vivo studies of synapses, including:**
 - presynaptic and postsynaptic distributions in any neuron in the mouse brain
 - development and plasticity in any neuron in the mouse brain

- general gene expression of TRE (tetracycline regulatory element) transgenes with spatial and temporal control

Advantages

- **Low basal expression** of TRE transgenes alone or in combination with one or both of the other transgenes without activation
- **Expression regulated with small molecules** (tetracycline or doxycycline)
- **Noninvasive** (unlike viral transduction or in utero electroporation)
- **Spatial and temporal control**, including
 - control over the types of labeled cells
 - control of labeling frequency
 - control of synaptic marker expression to bypass potential developmental defects

Publications

- Li L, Tasic B, Micheva KD, Ivanov VM, Spletter ML, Smith SJ and Luo L (2010), ["Visualizing the distribution of synapses from individual neurons in the mouse brain."](#) *PLoS ONE* 5(7): e11503

Innovators

- Bosiljka Tasic
- Liqun Luo
- Ling Li

Licensing Contact

Michael Bellas

Licensing Associate

[Email](#)