

# Spinel Nanocrystals on Graphene

Researchers in Prof. Hongjie Dai's laboratory have developed nanocarbon/inorganic nanoparticle hybrid materials for various electrocatalytic and electrochemical applications, such as batteries and fuel cells. Three types of hybrid materials have been created:

## 1) Nanocrystals on Graphene Nanoplates or Nanorods:

- Designed for use as electrodes in energy storage and conversion devices.
- Demonstrated high specific capacitance in pseudocapacitor materials, such as Ni(OH)<sub>2</sub> nanocrystals grown on graphene sheets.
- Showed excellent cycling ability and performance at different charge and discharge current densities.

## 2) Nanocrystals on Reduced Graphene Oxide:

- Created high-performance, bi-functional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER).
- Examples include Mn<sub>3</sub>O<sub>4</sub> on reduced graphene oxide for high-capacity anodes in lithium-ion batteries.
- Co<sub>3</sub>O<sub>4</sub>/N-doped graphene exhibited catalytic activity similar to platinum but with superior stability in alkaline solutions.

## 3) Carbon Nanotube-Graphene Complexes:

- Used for ORR catalysts with high activity and stability.
- Demonstrated high ORR activity in both acidic and alkaline solutions, approaching the performance of platinum.

For more information, please see related docket [S09-371](#).

Stage of Development:

The technology has been applied in various devices with promising results

# Applications

- **Batteries**
- Fuel Cells
- Supercapacitors

# Advantages

- **High performance** - high energy densities, high power densities, ultrafast charge/discharge rates, high catalytic activity
- **Low cost** - materials made from graphene, nanotubes and common metals are much less expensive than precious metals (such as platinum and iridium)
- **Scalable**
- **Environmentally friendly** materials that can be used with safe electrolytes (such as water and potassium hydroxide for the nickel-iron battery)
- **Durable catalysts** in both acidic and alkaline electrolytes

# Publications

- Yongye Liang, Yanguang Li, Hailiang Wang, Jigang Zhou, Jian Wang, Tom Regier & Hongjie Dai, [Co<sub>3</sub>O<sub>4</sub> nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction](#), Nature Materials 10, 780-786 (2011), published online 07 August 2011, doi:10.1038/nmat3087

# Patents

- Published Application: [20130189580](#)
- Published Application: [20140333264](#)
- Issued: [9,237,658 \(USA\)](#)

# Innovators

- Hongjie Dai

- Yongye Liang
- Yanguang Li
- Hailiang Wang

## **Licensing Contact**

### **Evan Elder**

Senior Licensing Associate

[Email](#)