Self-Healing Electrode for Lithium Ion Battery

Stanford researchers have demonstrated a self healing electrode that can dramatically enhance the cycle lifetime of lithium ion batteries by applying Si microparticles with a thin layer of self-healing conductive composite. Cracks and damages in the electrode over the large volume changes of Si materials during lithiation and dilithiation were found to be able to self-heal automatically and thus greatly enhance the cycling stability. Batteries with these self-healing anodes have superior capacity and can cycle more than 100 times in half cells while retaining more than 80% of their initial capacity. The cycling lifetime is more than **ten times** longer than state-of-the-art anodes of Si microparticles.

Stage of Development - Prototype

Researchers have attained a cycle life ten times longer than state-of-art anodes made from SiMPs and still retained more than 80% of their initial capacity (up to \sim 3,000 mA h g?1). The Yi Cui Group continues to refine and improve performance and longevity by testing other self-healing polymers and electrode materials.

Stanford News Article

<u>"Stanford and SLAC scientists invent self-healing battery electrode</u>", November 17, 2013

NPR "All Tech Considered" Feature

"Just Like Human Skin, This Plastic Sheet Can Sense And Heal", April 11, 2016

Applications

 For all types of lithium ion batteries to improve the cycling lifetime including those used in cell phones, electric vehicles, consumer electronics, and electrochemical devices.

Advantages

- Self-healing this polymer coating can repair cracks within a few hours.
- Cycling lifetime can be increased by more than 10 times
- Cycle more than 100 times in half cells while retaining more than 80% of their initial capacity
- Low cost

Publications

• Wang, C., Wu, H., Chen, Z., McDowell, M. T., Cui, Y., & Bao, Z. (2013). <u>Self-healing chemistry enables the stable operation of silicon microparticle anodes</u> for high-energy lithium-ion batteries. Nature Chemistry, 5(12), 1042-1048.

Patents

- Published Application: 20160049217
- Published Application: <u>WO2014116335</u>
- Issued: <u>9,490,045 (USA)</u>

Innovators

- Chao Wang
- Hui Wu
- Zhenan Bao
- Yi Cui
- Chee-keong Tee

Licensing Contact

Luis Mejia

Senior Licensing Manager, Physical Sciences

<u>Email</u>