Metal-dielectric hybrid surfaces as integrated optoelectronic interfaces with high optical transmittance and low sheet resistance

Stanford researchers at the Cui Lab have designed a self-aligned hybrid metaldielectric surface that offers unparalleled performance in applications where both a transparent contact and a photon management texture are needed. Current applications include the front surface of solar cells, photodetectors, camera sensors, and LEDs.

The team has developed a prototype of silicon nanopillars protruding through a patterned gold film. Despite high metal coverage (> 60%), this design had extremely high absorption (>97%) and low sheet resistance of 16 Ohm/sq. This design can be easily implemented in multiple metal-semiconductor systems using a simple one-step fabrication process.

Video -"Invisible wires' could boost solar-cell efficiency"

Stanford News, November 25, 2015 "Stanford engineers develop 'invisible wires' that could improve solar cell efficiency"

Stage of Research

 Continued research on optimizing and scaling up, developing new catalysts and chemistries, and optimizing optical and electrical properties for different applications.

Applications

• Any front surface where photon management is required such as at the front surface of solar cells, photodetectors, camera sensors, LEDs, and other optoelectronic devices

Advantages

- Optimized hybrid optoelectronic interface for maximum performance combines a photon management structure and transparent electrode in one design
- Versatile can be used for any surface
- Low sheet resistance significantly lower sheet resistance values than any technology currently available
- Very efficient up to 97% absorption across 400-900nm light
- Easy to implement
- Simple, one-step fabrication process based on metal-assisted chemical etching (MACE)
- Many different metal and materials stacks possible
 - Silver, gold, copper, aluminum, platinum, palladium, rhodium
 - $\circ\,$ Si, GaAs, InP explored thus far

Publications

 V. K. Narasimhan, T. M. Hymel, R. A. Lai, and Y. Cui. <u>"Hybrid</u> <u>Metal-Semiconductor Nanostructure for Ultrahigh Optical Absorption and Low</u> <u>Electrical Resistance at Optoelectronic Interfaces,"</u> ACS Nano ASAP, 2015

Patents

- Published Application: 20160322517
- Issued: <u>9,537,024 (USA)</u>

Innovators

• Yi Cui

- Vijay Narasimhan
- Thomas Hymel
- Ruby Lai

Licensing Contact

Jon Gortat

Licensing & Strategic Alliances Director for Physical Science

<u>Email</u>