Docket #: S19-376

Clinical Evaluation of Prostate Cancer using Machine Learning-Based Pathology Report Generation

A machine learning-based framework for summarizing prostate cancer and related findings through a pathology report generator. This report generator reduces time-consuming annotations and tumor volume estimation during clinical routines by extracting and summarizing relevant information into a pathology report to aid pathologist workflow. The framework can also determine subsets with increased risk for genomic alterations, high-risk of biochemical recurrence, and cancer-specific survival from a set of histology images.

Stage of Research

- Prototype
- Demonstrated for clinical routine, document archiving, and research

Related Technology:

Stanford Docket S19-308 - "Plexus Convolutional Neural Network for Histologic Imaging Analysis with Smaller Training Datasets and Parameters"

Applications

- Pathology report generator for clinical routine
- Treatment success rate analysis and quality control

Advantages

• Prepared pathology reports for clinical use

- Tumor volume calculation & lesion-based summarization using 1/18-1/54 of data volume
- Automated tumor lesion annotations
- Reports are portable and easily shared
- Extracted features can be used for prognostics development of molecular biological profiles

Publications

• Eminaga et al. arXiv preprint: <u>"Plexus Convolutional Neural Network</u> (PlexusNet): A novel neural network architecture for histologic image analysis"

Innovators

• Okyaz Eminaga

Licensing Contact

Imelda Oropeza

Senior Licensing Manager, Physcial Sciences

Email