Docket #: S19-388

Efficient Electrochemical Advanced Oxidation Process for Water Treatment

Stanford researchers have developed an efficient electrochemical pathway for hydroxyl radicals (*OH) production for advanced treatment trains for purification of municipal wastewater for potable reuse. Current method of OH production uses UV light splitting of $\rm H_2O_2$ which is less efficient due to the low absorption coefficient of $\rm H_2O_2$ and only about 10% use of $\rm H_2O_2$. This new electrochemical advanced oxidation process (AOP) requires lower $\rm H_2O_2$, uses the $\rm H_2O_2$ more efficiently and can avoid the use of expensive electrode materials. Demonstration of electrochemical dissociation of $\rm H_2O_2$ has been demonstrated with a low-cost stainless steel electrode.

Stage of Development

Lab scale demonstration

Applications

- Broadly applicable to water treatment
- Purification of municipal wastewater for potable reuse
- Can be scaled down to treat wells (e.g. wastewater recycling at the building scale)

Advantages

 More efficient electrochemical method as compared to current UV light splitting method

- **More simple and streamlined approach** to post-reverse osmosis (RO) disinfection, especially needed in municipal waste water recycling
- More complete use of H_2O_2 , and less concentration of H_2O_2 needed
- Lower energy consumption using an electrochemical approach instead of UV light splitting
- Modular approach can be scaled up or down
- Works with smaller-scale devices (e.g. wastewater recycling at the building scale)
- Avoids the use of expensive electrode materials that have low stability (e.g. boron-doped diamond, rare earth metals)

Patents

• Published Application: 20210078876

Innovators

William Mitch

Licensing Contact

Luis Mejia

Senior Licensing Manager, Physical Sciences

Email