Docket #: S19-518

High quality, low carbon cement

Stanford researchers have developed a high-quality cement with a 70% reduction in CO2 emissions with no upcycling. Cement is the second most consumed resource in the world, accounts for 8% of the world's CO2 emissions, is tough to recycle, and has a lifetime of about 50-100 years or less. In response, the Rocks and Geomaterials Laboratory at Stanford has engineered a low to near-to-zero carbon footprint cement clinker through a cement-processing technique that replaces limestone with carbon-free volcanic rocks and mimics how fibrous microstructures effectively reinforce rocks. The new process significantly slashes carbon dioxide emissions during manufacturing allowing for reductions of 70% of CO2 emissions, and can potentially increase durability.

Stage of Research

Researchers are in the prototype phase and testing the properties.

Applications

- Hydraulic cement construction particularly suited to harsh environments:
 - Areas that experience seismic ground shaking
 - Wellbore casings subject to injection of CO₂, acid fluids, or re-injection of wastewater fracking
 - o Planetary shelters and habitats of tomorrow

Advantages

- 70% reduction in CO₂ emissions without relying on carbon upcycling:
 - Pyroprocessing of this alternative raw material leads to no carbon footprint
 - No need to build new cement plants for carbon capture and sequestration

- Exceptional physico-chemical properties making it suited to harsh environments:
 - High compressive strength
 - Expanded durability naturally reinforced, binds well, and absorbs strain energy (seismic shaking)
 - High thermal stability
 - High chemical resilience and resistant to acid fluids minimal alkali-silica reaction (ASR) expected due of the lack of silica in the clinker

Publications

 Jackson MacFarlane, Tiziana Vanorio, John Oleson, Gordon Williams, Dante Zakhidov, Anthony Clark, and Alberto Salleo. "The Source for Lime in Roman Concrete: Igneous or Sedimentary Rock? A Path Toward Sustainable Cements," forthcoming.

Innovators

• Tiziana Vanorio

Licensing Contact

David Mallin

Licensing Manager, Physical Sciences

Email