Docket #: S20-114

Lithium Extraction through Pulsed Electrochemical Intercalation Method

Stanford researchers have developed a new electrochemical method for extracting lithium from low concentration sources such as seawater. Despite containing 5000x more lithium than land and brine-based resources, the presence of sodium (4x that of lithium) in seawater has made clean extraction of lithium difficult. By using a ${\rm TiO}_2$ -coated ${\rm FePO}_4$ to intercalate lithium into the electrode, researchers were able to achieve high selectivity for lithium. In cases where the Li/Na molar ratio is greater than 10^{-3} , the diffusion barrier and thermodynamic intercalation potentials yield $\sim 100\%$ Li selectivity over Na. However, for seawater or water with lower Li/Na ratios, the pulse sequence developed here yields Li selectivity $\sim 1.8 \times 10^4$ over Na. The pulse sequence additionally helps to stabilize the crystal structure, prolonging the electrode lifetime. This improved lithium extraction method is critical as the demand for lithium-ion batteries increases in the coming decades.

Stage of Research

• Proof of concept

Applications

- Lithium-ion battery materials
- Lithium extraction

Advantages

- Lithium extraction from low concentration sources: seawater, lake water
- Does not require pre-concentration of water into brine

Publications

• Liu et al. Joule (2020) <u>"Lithium Extraction from Seawater through Pulsed</u> Electrochemical Intercalation"

Patents

• Published Application: WO2021188570

• Published Application: 20230075724

Innovators

- Yi Cui
- Steven Chu
- Chong Liu

Licensing Contact

Jon Gortat

Licensing & Strategic Alliances Director for Physical Science

Email