Docket #: S21-246

Geometric-Phase Metasurface Optofluidics for Microlens-Free Planar Light-Field Displays

As part of a comprehensive optofluidic platform, researchers at Stanford have developed an integrated dynamic flat-optics system enabling microlens-free metasurface planar light-field displays. This technology is realized in a microfluidic system by flowing liquids with different refractive indices on top of light-field pixels having subwavelength-thick, engineered silicon nanoresonator arrays. This technology enables the dynamic intensity control of light-field pixels that can project light to arbitrary directions without the help of microlens arrays. Such a submicrometer-thick light-field pixel array can create different images for different viewing angles, mimicking the light scattered by real 3-D objects. By eliminating microlens arrays, the metasurface light-field display has a more compact configuration, collects and redirects light in a more efficient way, and also enables the possibility of reflective-type light-field displays.

This technology is part of a portfolio showing how the convergence of optofluidics and metasurface optics can lead to new platforms for dynamic control of light fields. Explore more:

<u>S21-247 – an integrated system enabling on-demand transmissive flat optics and ultra-compact refractometers.</u>

S21-249 – a new type of reflective display technology for achieving transparent displays.

Stage of Development

The Brongersma team has demonstrated that their comprehensive platform offers a wide range of fundamental dynamic control functions, is realized using the same material and by the same processing, and is compatible with mature microfluidic integration technologies.

Applications

• Microlens-free metasurface planar light-field displays

Advantages

- Redirects the beam more efficiently (vs. Lambertian light source)
- Avoids the strange, unpleasant glazing effect from the microlens arrays
- Easy switch between light-field displays and conventional displays
- More compact configuration

Publications

• Li, Q., van de Groep, J., White, A.K. et al. <u>Metasurface optofluidics for dynamic</u> control of light fields. *Nat. Nanotechnol.* (2022).

Innovators

- Mark Brongersma
- Qitong Li
- Jorik Van De Groep
- Jung-Hwan Song

Licensing Contact

Luis Mejia

Senior Licensing Manager, Physical Sciences

Email