Removing Methane From Air by Bubbling Air Through Saltwater

Methane (CH4), a potent greenhouse gas with 25 times the thermal impact of carbon dioxide (CO?), contributes to about 30% of global warming since the Industrial Revolution. Developing an efficient and cost-effective method to remove methane from the atmosphere is crucial for achieving sustainability goals. The Stanford team has proposed a novel approach: Partial Oxidation of Methane (POM) to methanol, which not only mitigates emissions but also generates valuable chemical products.

This process involves forming methane-air microbubbles (20-40 ?m) in saltwater and applying an alternating electric field drive using a copper oxide foam electrode. Dissolved salts (KCl or NaCl at 3%) enhance methane solubility, enabling more effective reactions at the gas-water interface. By fine-tuning drive frequency and amplitude, methanol selectivity exceeds 90%, with minimal byproduct formation. The methane-to-methanol conversion yield reaches 57%, with a production rate of ~887 ?M h?¹.

This method offers an innovative solution for methane removal using seawater and presents opportunities for converting concentrated methane sources into valueadded methanol, addressing both environmental and industrial needs.

Stage of Development: Prototype

Applications

• Greenhouse gas (Methane) removal

Advantages

- Superior to electrochemistry or photochemistry methods
- High selectivity (exceeds 90%)
- Value-added end product: methane to methanol conversion

Publications

 SF Nami-Ana, MA Mehrgardi, M Mofidfar, RN Zare (2024). <u>Sustained</u> <u>Regeneration of Hydrogen Peroxide at the Water-Gas Interface of</u> <u>Electrogenerated Microbubbles on an Electrode Surface</u>. *Journal of the American Chemical Society*, 146(46), 31945-31949.

Innovators

- Xiaowei Song
- Chanbasha Basheer
- Richard Zare

Licensing Contact

Evan Elder

Senior Licensing Associate

<u>Email</u>