

Docket #: S25-020

Using frequency modulation for ultra-fast RF power control

Stanford scientists have developed a frequency-based power control method that enables RF amplifiers to double their output power within 500 nanoseconds using only passive components. The approach overcomes limitations of existing power modulation techniques by providing ultra-fast switching without sacrificing efficiency or requiring complex multi-phase systems, offering significant advantages for semiconductor manufacturing, wireless power transfer, and industrial heating applications.

RF power amplifiers are essential components in plasma generation, semiconductor etching, wireless power transfer, and communication systems, where precise and rapid power modulation is often critical for optimal performance. Current power modulation techniques face significant limitations: voltage rail regulation is typically slow due to large capacitor constraints, while out-phasing methods require complex multi-phase systems that increase cost and reduce efficiency at large phase shifts. These constraints limit the dynamic range and response speed needed for advanced manufacturing processes and high-performance RF applications.

The frequency-controlled resistance regulation network achieves ultra-fast power modulation using single-phase power amplifiers, eliminating the complexity and cost associated with multi-phase systems required by out-phasing approaches. Unlike voltage rail regulation that requires additional DC-DC converter stages and suffers from slow response times, this method uses only passive components to modulate the apparent load resistance through small frequency adjustments. Importantly, the approach is fully compatible with existing power modulation techniques, enabling it to be integrated with current systems to enhance overall performance and extend dynamic range capabilities.

Stage of Development:

Prototype

Applications

- Ultra-fast power modulation for semiconductor etching and plasma generation systems
- Wireless power transfer systems requiring rapid power adjustment
- Communication systems and RF transmitters needing dynamic power control
- Industrial heating applications with precise power modulation requirements
- Enhancement of existing RF power systems through integration with current modulation techniques

Advantages

- Achieves ultra-fast power transitions within 500 nanoseconds while maintaining high efficiency
- Uses only passive components, eliminating the need for complex active control circuits
- Compatible with single-phase power amplifiers, reducing system complexity and cost compared to multi-phase approaches
- Fully integrable with existing power modulation methods to extend dynamic range and improve performance
- Maintains zero-voltage switching during power transitions, ensuring efficient operation across the modulation range

Publications

- Ye, Z., Stolt, E., Surakitbovorn, K., & Rivas-Davila, J. (2025). [Broadband High Frequency Power Modulation with Resistance Regulation Network](#). IEEE Transactions on Power Electronics.

Innovators

- Zhechi Ye
- Juan Rivas-Davila

Licensing Contact

Jon Gortat

Licensing & Strategic Alliances Director for Physical Science

[Email](#)