Docket #: S20-474
Photoconductive Switch in Diamond
Use of diamond in high power and high temperature electronics is ideal due to its inherent properties, notably an ultra-high critical electric field of 10 MW/cm. Electronic devices require p-n junctions to achieve these electric fields, and thus n-doped diamond is required. Stanford researchers have designed a process and materials for phosphorous n-doped diamond that overcomes traditional processing limitations due to hydrogen passivation and co-doping. This new process from the Chowdhury group utilizes microwave plasma chemical vapor deposition to control doping levels with minimal undesired hydrogen to maintain high conductivity. Testing of these diamond photoconductive switches demonstrated a very high on:off ratio, and p-i-n diodes with 2kV and higher voltages.
Stage of Research
Applications
- Photoconductive switches
- Grid-scale applications
- Ultra-wide band signals
Advantages
- Holds very high voltage and power
- Maintains operation at high temperatures and in harsh environments
Related Links
Similar Technologies
-
Method of Organic Semiconductor Thin Film S12-369Method of Organic Semiconductor Thin Film
-
n-Type Dopants for Organic Electronics S10-055n-Type Dopants for Organic Electronics
-
Self-Powered Electronic Skin S14-211Self-Powered Electronic Skin