Researchers at Stanford have reported the first high energy density shape memory polymer based on the formation of strain-induced supramolecular nanostructures, which immobilize stretched chains to store entropic energy.
One of the largest challenges for soft robotics is obtaining adequate feedback control while forming dexterous movements. Here Stanford researchers have developed a patterning technique using a UV laser on metalized plastic film.
The Zhenan Bao Research Group at Stanford University developed and manufactured a photo-curable, directly patternable, stretchable, and highly conductive polymer that is ideal for bioelectronic applications, and stretchable electronic devices.
Scientists in the Zhenan Bao Research Group at Stanford developed a process for direct photo-patterning of electronic polymers that improves device density of elastic circuits over 100x.
The Zhenan Bao Research Group at Stanford University has designed an intrinsically stretchable polymeric matrix that allows seamless integration with physically crosslinked PEDOT:PSS, while stabilizing its high stretchability, and high conductivity after all necessary fabricat
Stanford researchers at the Bao Research Group have patented a body area sensor network (bodyNET) that can be used to monitor human physiological signals for next-generation personalized healthcare.
Stanford researchers have developed a compact, low-cost complete sensor solution (sensor plus reader) which can interpret fully-passive sensors through a simple handheld external reader. The readout mechanism can take measurements independent of the readout distance (i.e.
Stanford researchers at the Bao Research Group have developed a second-generation stretchable multi-sensor tag technology for detecting physiological signals.
Stanford researchers have demonstrated a self healing electrode that can dramatically enhance the cycle lifetime of lithium ion batteries by applying Si microparticles with a thin layer of self-healing conductive composite.
Stanford engineers at Zhenan Bao's laboratory have designed a compliance sensor which can identify softness (compliance) of touched objects and provide human-like sensation to robots and prosthetics.
This bandage-like multi-lead, continuous ECG monitoring device uses new stretchable electrode material developed in the Bao group to accurately and imperceptibly diagnose cardiac arrhythmia.