Researchers in the Dionne group at Stanford have designed a nanoscale laser capable of self-isolated Raman Lasing, where lasing and isolation occurs within the same pumping mechanism.
Stanford researchers have developed a library of polymeric hydrogel formulations to prevent and/or reduce biofouling on implanted sensors and medical devices.
The Murmann lab has developed a method for an extraction information from acoustic signals that utilizes low power consumption. N-path filters are used to decompose the original acoustic signals' waveform before downconverting to lower their Nyquist-rate bandwidth.
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an efficacious therapy for patients with life-threatening leukemias, but its use has been hindered by the limited availability of donors with matching HLA. Graft manipulation by removing ??
Researchers in Prof. Karl Deisseroth's laboratory have developed a portfolio of microbial opsin proteins that can be used for precise and modular photosensitization components that enable optical control of specific cellular processes.
Researchers in Dr. Karl Deisseroth's lab have developed a selective approach to treat anxiety. Anxiety is characterized by several features that are coordinately regulated by diverse neuronal system outputs.
Researchers in Prof. Karl Deisseroth's laboratory have used optogenetic tools to develop an animal model for social dysfunction by precisely targeting defined neural circuit elements.
Researchers in Prof. Karl Deisseroth's laboratory have used optogenetic tools to develop an animal model for anxiety by precisely identifying, creating, resolving, and targeting defined neural circuit elements.
Researchers in Prof. Karl Deisseroth's laboratory have combined optogenetics with functional magnetic resonance imaging (fMRI) to enable highly specific in vivo analysis of brain circuits.
Researchers in Prof. Karl Deisseroth's laboratory have used optogenetic tools to develop an animal model for cocaine-modulated behavior modification by precisely targeting defined neural circuit elements.
Researchers in Prof. Karl Deisseroth's laboratory have engineered a novel channelrhodopsin with enhanced expression, faster speed, and improved targeting.
Researchers in Prof. Karl Deisseroth's laboratory have used optogenetic tools to develop a precise, specific and inexpensive animal model of impaired memory.