Researchers at Stanford have identified amino acid modifications in the IgG Fc region which extend its therapeutic half-life and improve its in vivo receptor binding.
Researchers at Stanford have developed FiberFold, a computational tool enabling the rapid analysis of 3D chromatin architecture in conjunction with chromatin accessibility, CTCF binding, CpG methylation, and underlying genetic architecture.
The Stanford team has developed a Short Fiber Pre-Plied Double-Double (PPDD) Tape that can achieve complex, double-curvature composite parts like a helmet while maintaining high stiffness and other desired mechanical properties.
Stanford researchers have developed a new class of aryl ester RNA-reactive reagents that are stable for months in water yet rapidly modify RNA upon catalytic activation, enabling reliable, scalable tools for RNA research and therapeutic applications.
Stanford researchers have developed multivalent SIRP-alpha fusion polypeptides that selectively block the CD47–SIRP-alpha immune checkpoint with enhanced potency, enabling next-generation immunotherapies that promote immune clearance of cancer and diseased cells while minimizi
Stanford researchers have developed the Broadly Usable Multi-Pass Engineered Receptor (BUMPER) architecture, a novel protein engineering platform for assembling stable, multifunctional cell surface receptors.
Researchers in the Onori Lab have developed a state of charge (SOC) estimation technique for Lithium Iron Phosphate (LFP) batteries using machine learning.
Stanford scientists have developed the Programmable Antigen-Mediated Cellular Knock-in of T cell (PACK-IT) platform that enables rapid CAR-T cell engineering in hours rather than weeks.
Stanford scientists have developed species cross-reactive B7H3-targeting CAR-T cells that can effectively target both human and mouse tumors, enabling more accurate preclinical testing in immunocompetent models.
Stanford scientists have developed a method to selectively expand CAR-T cells by co-delivering IL9R with CAR genes using a novel platform that enables rapid CAR-T cell engineering through targeted lentiviral delivery.
Stanford researchers have developed an innovative wearable device that enhances mindfulness training by augmenting the user's real-time auditory environment.
Researchers at Stanford have pioneered a novel approach to tuberculosis (TB) vaccine development by pinpointing a novel T-cell target, a PPE protein epitope, via leading edge T-cell reporter assays and comprehensive peptide library screening.